

10^E COLLOQUE BIO POUR TOUS! 28 ET 29 FÉVRIER 2024

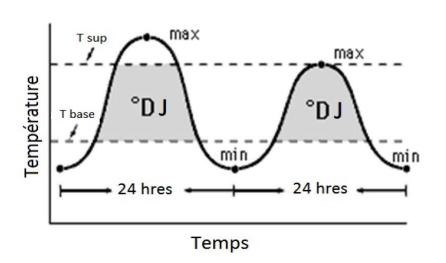
L'utilisation des degrés-jours comme outil de planification

Emmanuelle Bergeron, agr., CETAB+

Métabolisme

- Plante agricole généralement mésophile optimum (10-30° C)
- Absence de régulation de température
- Stratégies d'adaptation au stress
- Processus biochimiques

Enjeux

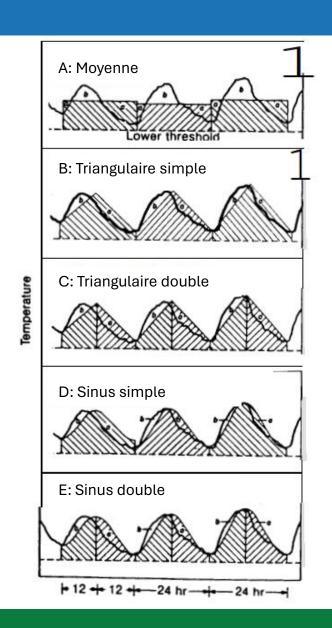

- Planification de la récolte basée sur les jours à maturité et l'expérience des producteurs
- Disponibilité des cultivars
- Conditions météorologiques extrêmes.
- Plantations successives
- Semis vs transplants

Température de croissance

- T base: la température en dessous duquel le taux de développement approchent de zéro ou s'arrête complètement.
- T supérieur: la température au-dessus duquel le taux de développement cesse d'augmenter. Limite supérieure de température pour le développement.
- DJ: Les degrés-jours correspondent à la surface sous la courbe de température, entre la température de base d'un organisme vivant et sa température supérieure.

PARTICULIÈRES À CERTAINES CULTURES						
Cultures	Températures de base (^O C)					
Épinards	2,2					
Laitues	4,4					
Croissance générale des plantes	5,0					
Pois	5,5					
Asperges	5,5					
Mais	10,0					
Haricots	10,0					
Citrouilles	13,0					
Tomates	13,0					

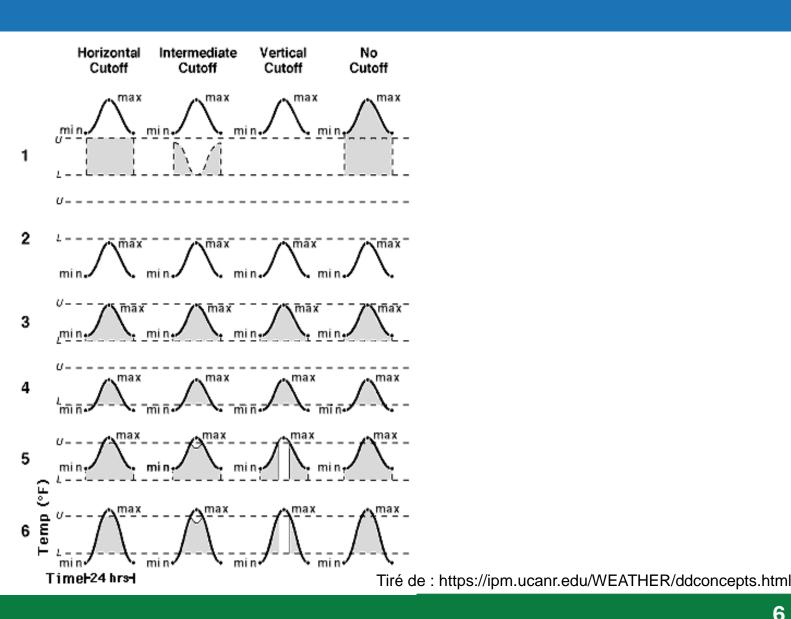
Source: Edey, S. N. (1980). *Degres-jours de Croissance et Production des Cultures au Canada*. Agriculture Canada

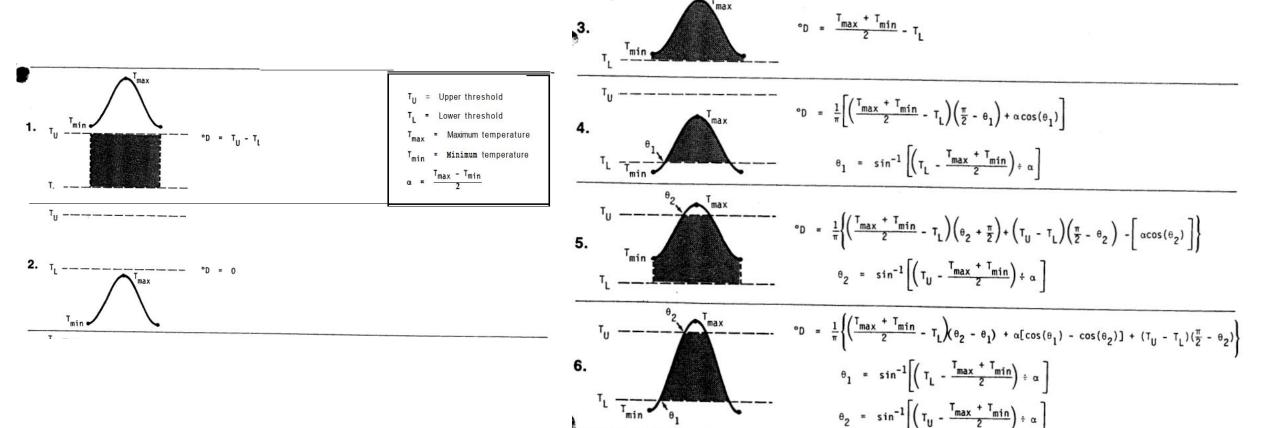

Source: Réseau d'avertissements phytosanitaires – Bulletin d'information No 03 – pommier – 9 mai 2012

Méthodes de calcul des DD

Méthode standard

Degrés-jours=
$$\frac{Tmax+Tmin}{2}$$
 - Thase $Si < 0$ alors $DJ = 0$


Adapté de : Zalom, F. G., Goodell, P. B., Wilson, L. T., Barnett, W. W., & Bentley, W. J. (1983). Degree-days, the calculation and use of heat units in pest management: university of california division of agriculture and natural resources leaflet 21373. *University of California, Berkeley, CA*.


Équations

Six relations

Trois coupures

Exemple: Sinus simple avec coupure horizontale

Source: Zalom, F. G., Goodell, P. B., Wilson, L. T., Barnett, W. W., & Bentley, W. J. (1983). Degree-days, the calculation and use of heat units in pest management: university of california division of agriculture and natural resources leaflet 21373. *University of California, Berkeley, CA*.

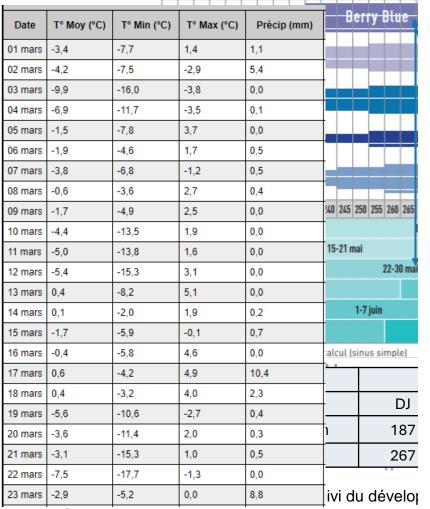
Méthode standard VS Sinus Simple

Tableau 1 : Degrés-jours nécessaires pour atteindre les différents stades repères du pommier (cv 'McIntosh'), calculés selon la méthode standard et la méthode sinus (Baskerville). Température de base = 5 °C, début des calculs = 1er mars

Stades repères du pommier	DJ standard base = 5°	DJ sinus base = 5°
Débourrement	65	79
Débourrement avancé	95	116
Prébouton rose	125	158
Bouton rose	175	Non interchangeable 197
Bouton rose avancé	200	224
Pleine floraison	235	255
Calice	300	313
Nouaison	350	371

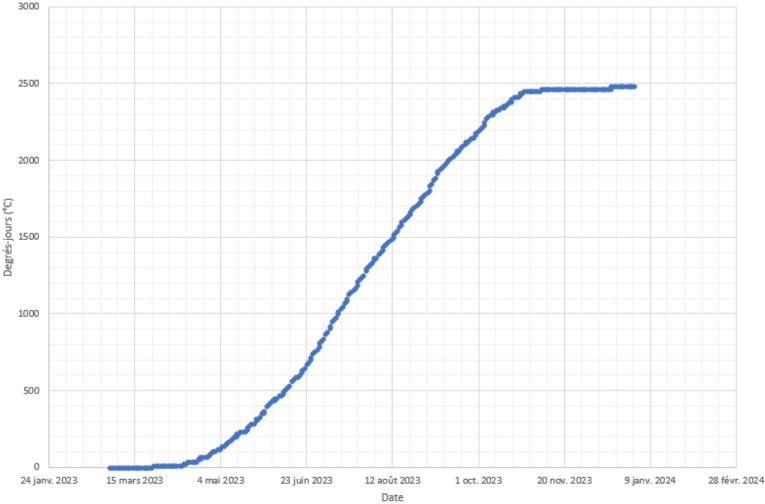
Source: Réseau d'avertissements phytosanitaires – Bulletin d'information No 03 – pommier – 9 mai 2012

Échelle BBCH et stades phénologiques


Table 1: Phenology calculations using 0°C and 32 °F base temperatures are combined with the Universal Growth Staging Scale descriptive terms for crops grown in Montana.

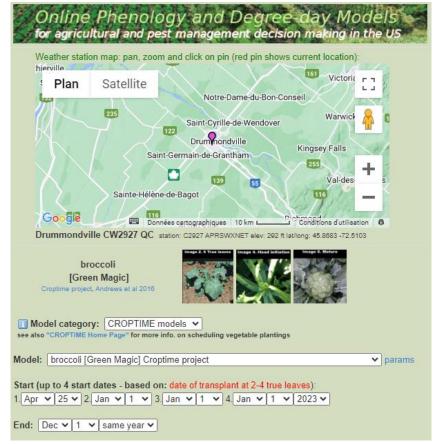
PEA Data source: Stu Brandt, Scott, SK 1993-97 and Perry Miller, Swift Current, SK 1995-98								
		Stage	$GDD^{\circ}C$	GDD°F				
Leaf Stages	Two leaves unfolded.	1.2	198-230	388-446				
	Four leaves unfolded.	1.4	301-340	573-644				
	Six leaves unfolded.	1.6	404-449	759-840				
	Eight leaves unfolded.	1.8	507-558	944-1036				
Flowering	Flowering begins. At least one open floret on 50% or more plants.	6.0	724-835	1335-1535				
	Flowering 50% complete.	6.5	862-982	1583-1799				
Seed fill	Seed fill begins. 10% of seeds have reached final size.	7.1	1028-1158	1882-2116				
Maturity	Seed begins to mature. 10% of seed has changed color.	8.1	1305-1451	2381-2643				
Maturity complete 90% of seed changed color. Await completion of drydown for								
	direct harvesting.	8.9	1527-1686	2780-3066				
Seed fill Maturity	Six leaves unfolded. Eight leaves unfolded. Flowering begins. At least one open floret on 50% or more plants. Flowering 50% complete. Seed fill begins. 10% of seeds have reached final size. Seed begins to mature. 10% of seed has changed color. e 90% of seed changed color. Await completion of drydown for	1.6 1.8 6.0 6.5 7.1 8.1	404-449 507-558 724-835 862-982 1028-1158 1305-1451	759-840 944-1036 1335-1535 1583-1799 1882-2116 2381-2643				

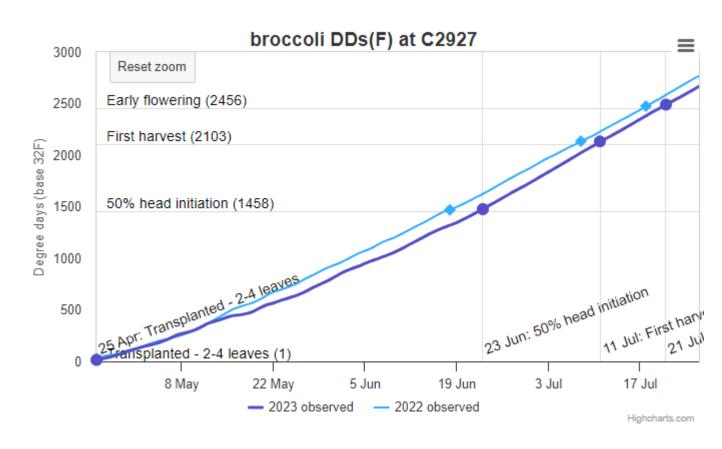
Source: Miller, P., Lanier, W., & Brandt, S. (2001). Using growing degree days to predict plant stages. *Ag/Extension Communications Coordinator, Communications Services, Montana State University-Bozeman, Bozeman, MO*, 59717(406), 994-2721.


Courbe DJ (exemple camerise)

ABONDANCE FLORALE EN FONCTION DU CUMUL DES DEGRÉS-

Québec, ministère de l'Agriculture, des Pêcheries





Variabilité

Modèle bioclimatique OSU Croptime DD (OREGON) en ligne

MODEL OUTPUT

Weather station: 2023 C2927 APRSWXNET Drummondville CW2927 QC Lat:45.8683 Long:-72.5103 Elev:292 QA score: 0.93

Source: http://smallfarms.oregonstate.edu/croptime.

Mar	Month Day Max (Max (F)	Min /E)	Dragin/in\	DDa/E) Taday	QA+	Starting 4-25				
WIOI	iiui	Day	iviax (F)	Min (F)	Precip(in)	ii (F) Fiecip(iii)	DDs(F) Today	DDs(F) Today	DDs(F) Today	Notes	Cumu. DDs(F)	Model Events
4	ļ	25	53.0	40.0	0.07	14.5		14	Transplanted - 2-4 leaves			
6	;	23	88.0	57.0	0.14	34.2		1477	50% head initiation			
7	,	11	82.0	64.0	0.06	36.5		2132	First harvest			
7	'	21	77.0	62.0	0.63	35.4		2491	Early flowering			

Modèle bioclimatique OSU Croptime DD (OREGON)

Table 1. Model parameters for four transplanted broccoli cultivars

*Sinus simple

Variety	50% head initiation (DDs)	First harvest (DDs)	Early flowering (DDs)	DD model accuracy ¹ (days)	Observed days to early flowering ²	Calendar- day accuracy ¹ (days)	Number of data sets ³
Arcadia	1674	2281	2672	±2.5	86	±7.5	8
Emerald Pride	1565	2151	2518	±6.4	77	±11	5
Green Magic	1458	2103	2456	±4.1	81	±23	10
Imperial	1753	2383	2688	±4.6	85	±6.5	4

Jusqu'à 23 jours

Source: Andrews, N., Coop, L. B., Stoven, H., Noordijk, H., & Heinrich, A. (2021). *Vegetable Degree-day Models: An Introduction for Farmers and Gardeners*. Oregon State University Extension Service.

Logiciel CIPRA

- Visualiser les prévisions d'attaque d'insectes ou de maladies,
 l'incidence de désordres physiologiques et la phénologie de certaines cultures.
- En temps réel
- Agrométéo intègrent plusieurs modèles bioclimatiques du CIPRA
- 130 modèles prévisionnels pour plus de 25 cultures différentes.
- Pour obtenir une copie du logiciel contacter Bioclimatologie et modélisation : aafc.bioclimatologieetmodelisationbioclimatologyandmodelling.aac@canada.ca

CIPRA - Centre Informatique de Prévision des Ravageurs en Agriculture

Guide des cultures

Canada

Modèle DJ à la ferme

- 1. Enregistrez vos dates de plantation ou de semis.
- 2. Prenez note des dates auxquelles les plantes atteignent les stades phénologiques prévues dans les modèles ou les échelles BBCH
- 3. Comparer les prévisions des modèles disponible en ligne à la fin de la saison avec vos observations.
- 4. Vous pouvez générer un modèle simple de degrés-jours pour votre variété pour une comparaison entre les années à l'aide des seuils de développement inférieur et supérieur ainsi que les informations météorologiques de votre ferme ou d'une station météorologique à proximité (ex: agrométéo).

Merci